Thursday, September 3, 2020

LeetCode [1368] Minimum Cost to Make at Least One Valid Path in a Grid

 1368. Minimum Cost to Make at Least One Valid Path in a Grid

Hard
Given a m x n grid. Each cell of the grid has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j] can be:
  • 1 which means go to the cell to the right. (i.e go from grid[i][j] to grid[i][j + 1])
  • 2 which means go to the cell to the left. (i.e go from grid[i][j] to grid[i][j - 1])
  • 3 which means go to the lower cell. (i.e go from grid[i][j] to grid[i + 1][j])
  • 4 which means go to the upper cell. (i.e go from grid[i][j] to grid[i - 1][j])

Notice that there could be some invalid signs on the cells of the grid which points outside the grid.

You will initially start at the upper left cell (0,0). A valid path in the grid is a path which starts from the upper left cell (0,0) and ends at the bottom-right cell (m - 1, n - 1) following the signs on the grid. The valid path doesn't have to be the shortest.

You can modify the sign on a cell with cost = 1. You can modify the sign on a cell one time only.

Return the minimum cost to make the grid have at least one valid path.

 

Example 1:

Input: grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
Output: 3
Explanation: You will start at point (0, 0).
The path to (3, 3) is as follows. (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) change the arrow to down with cost = 1 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) change the arrow to down with cost = 1 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) change the arrow to down with cost = 1 --> (3, 3)
The total cost = 3.

Example 2:

Input: grid = [[1,1,3],[3,2,2],[1,1,4]]
Output: 0
Explanation: You can follow the path from (0, 0) to (2, 2).

Example 3:

Input: grid = [[1,2],[4,3]]
Output: 1

Example 4:

Input: grid = [[2,2,2],[2,2,2]]
Output: 3

Example 5:

Input: grid = [[4]]
Output: 0

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
    int m, n;
    Queue<int[]> bfs = new LinkedList<>();
    int[][] DIR = new int[][]{{0,1},{0,-1},{1,0},{-1,0}};
    int[][] dp;
    public int minCost(int[][] grid) {
        m = grid.length;
        n = grid[0].length;
        dp = new int[m][n];
        for(int i=0; i<m; ++i){
            Arrays.fill(dp[i], -1);
        }
        int cost = 0;
        dfs(grid, 0, 0, cost);
        while(!bfs.isEmpty()){
            int sz = bfs.size();
            cost++;
            for(int i=0; i<sz; ++i){
                int[] t = bfs.poll();
                for(int[] d:DIR){
                    dfs(grid, t[0]+d[0], t[1]+d[1], cost);
                }
            }
        }
        return dp[m-1][n-1];
    }

    void dfs(int[][] grid, int r, int c, int cost){
        if(r<0 || r>=m || c<0 || c>=n || dp[r][c]!=-1) return;
        bfs.add(new int[]{r, c});
        dp[r][c] = cost;
        int next = grid[r][c]-1;
        dfs(grid, r+DIR[next][0], c+DIR[next][1], cost);
    }
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class Solution {
    public int minCost(int[][] grid) {
        int[][] dirs = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } };
        int m = grid.length;
        if (m == 0)
            return -1;
        int n = grid[0].length;
        if (n == 0)
            return -1;

        Queue<int[]> que = new LinkedList<>();
        que.add(new int[] { 0, 0 });
        int[][] cost = new int[m][n];// min cost to get here
        for (int i = 0; i < m; ++i)
            Arrays.fill(cost[i], Integer.MAX_VALUE);
        cost[0][0] = 0;

        while (!que.isEmpty()) {
            int[] cell = que.poll();
            int r = cell[0], c = cell[1], ct = cost[r][c];
            int dir = grid[r][c];
            for (int[] d : dirs) {
                int r1 = r + d[0], c1 = c + d[1];
                if (r1 < 0 || r1 >= m || c1 < 0 || c1 >= n)
                    continue;
                int ct1 = ct + (match(dir, r, c, r1, c1) ? 0 : 1);
                if (ct1 >= cost[r1][c1])
                    continue;
                cost[r1][c1] = ct1;
                que.add(new int[] { r1, c1 });
            }
        }

        return cost[m - 1][n - 1];
    }

    boolean match(int d, int r, int c, int r1, int c1) {
        if (d == 1 && r == r1 && c + 1 == c1)
            return true;
        if (d == 2 && r == r1 && c - 1 == c1)
            return true;
        if (d == 3 && r + 1 == r1 && c == c1)
            return true;
        if (d == 4 && r - 1 == r1 && c == c1)
            return true;
        return false;
    }
}

No comments:

Post a Comment