Friday, September 4, 2020

LeetCode [1031] Maximum Sum of Two Non-Overlapping Subarrays

 1031. Maximum Sum of Two Non-Overlapping Subarrays

Medium

Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.)

Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either:

  • 0 <= i < i + L - 1 < j < j + M - 1 < A.lengthor
  • 0 <= j < j + M - 1 < i < i + L - 1 < A.length.

 

    Example 1:

    Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
    Output: 20
    Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
    

    Example 2:

    Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
    Output: 29
    Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
    

    Example 3:

    Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
    Output: 31
    Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
    

     

    Note:

    1. L >= 1
    2. M >= 1
    3. L + M <= A.length <= 1000
    4. 0 <= A[i] <= 1000
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    class Solution {
        public int maxSumTwoNoOverlap(int[] A, int L, int M) {
            int n = A.length;
            for(int i=1; i<n; ++i) A[i] += A[i-1];
    
            int ret = A[L+M-1], Lmax = A[L-1], Mmax = A[M-1];
            for(int i=L+M; i<n; ++i)
            {
                Lmax = Math.max(Lmax, A[i-M] - A[i-L-M]);
                Mmax = Math.max(Mmax, A[i-L] - A[i-L-M]);
                ret = Math.max(ret, Math.max(Lmax + A[i] - A[i-M], Mmax + A[i] - A[i-L]));
            }
            return ret;
        }
    }
    

    No comments:

    Post a Comment