1031. Maximum Sum of Two Non-Overlapping Subarrays
Medium
Given an array A
of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L
and M
. (For clarification, the L
-length subarray could occur before or after the M
-length subarray.)
Formally, return the largest V
for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1])
and either:
0 <= i < i + L - 1 < j < j + M - 1 < A.length
, or0 <= j < j + M - 1 < i < i + L - 1 < A.length
.
Example 1:
Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2.
Example 2:
Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2.
Example 3:
Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.
Note:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | class Solution { public int maxSumTwoNoOverlap(int[] A, int L, int M) { int n = A.length; for(int i=1; i<n; ++i) A[i] += A[i-1]; int ret = A[L+M-1], Lmax = A[L-1], Mmax = A[M-1]; for(int i=L+M; i<n; ++i) { Lmax = Math.max(Lmax, A[i-M] - A[i-L-M]); Mmax = Math.max(Mmax, A[i-L] - A[i-L-M]); ret = Math.max(ret, Math.max(Lmax + A[i] - A[i-M], Mmax + A[i] - A[i-L])); } return ret; } } |
No comments:
Post a Comment