1292. Maximum Side Length of a Square with Sum Less than or Equal to Threshold
Medium
Given a m x n
matrix mat
and an integer threshold
. Return the maximum side-length of a square with a sum less than or equal to threshold
or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4 Output: 2 Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1 Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6 Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184 Output: 2
Constraints:
1 <= m, n <= 300
m == mat.length
n == mat[i].length
0 <= mat[i][j] <= 10000
0 <= threshold <= 10^5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | class Solution { public int maxSideLength(int[][] mat, int threshold) { int n = mat.length; int m = mat[0].length; int[][] sums = new int[n + 1][m + 1]; int max = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { sums[i + 1][j + 1] = sums[i + 1][j] + sums[i][j + 1] - sums[i][j] + mat[i][j]; if (i - max >= 0 && j - max >= 0 && sums[i + 1][j + 1] - sums[i - max][j + 1] - sums[i + 1][j - max] + sums[i - max][j - max] <= threshold ) { max += 1; } } } return max; } } |
No comments:
Post a Comment