Tuesday, September 29, 2020

LeetCode [1499] Max Value of Equation

 1499. Max Value of Equation

Hard

Given an array points containing the coordinates of points on a 2D plane, sorted by the x-values, where points[i] = [xi, yi] such that xi < xj for all 1 <= i < j <= points.length. You are also given an integer k.

Find the maximum value of the equation yi + yj + |xi - xj| where |xi - xj| <= k and 1 <= i < j <= points.length. It is guaranteed that there exists at least one pair of points that satisfy the constraint |xi - xj| <= k.

 

Example 1:

Input: points = [[1,3],[2,0],[5,10],[6,-10]], k = 1
Output: 4
Explanation: The first two points satisfy the condition |xi - xj| <= 1 and if we calculate the equation we get 3 + 0 + |1 - 2| = 4. Third and fourth points also satisfy the condition and give a value of 10 + -10 + |5 - 6| = 1.
No other pairs satisfy the condition, so we return the max of 4 and 1.

Example 2:

Input: points = [[0,0],[3,0],[9,2]], k = 3
Output: 3
Explanation: Only the first two points have an absolute difference of 3 or less in the x-values, and give the value of 0 + 0 + |0 - 3| = 3.

 

Constraints:

  • 2 <= points.length <= 10^5
  • points[i].length == 2
  • -10^8 <= points[i][0], points[i][1] <= 10^8
  • 0 <= k <= 2 * 10^8
  • points[i][0] < points[j][0] for all 1 <= i < j <= points.length
  • xi form a strictly increasing sequence.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
    public int findMaxValueOfEquation(int[][] points, int k) {
        int maxR = Integer.MIN_VALUE;
        //<yi-xi, xi>
        PriorityQueue<int[]> pq = new PriorityQueue<>((a,b) -> {
                if(a[0]==b[0]) return a[1]-b[1];
                else return b[0]-a[0];
            }
        );
        for(int i=0; i<points.length; ++i){
            while(!pq.isEmpty() && points[i][0]-pq.peek()[1]>k){
                pq.poll();
            }
            if(!pq.isEmpty()){
                int r = points[i][0]+points[i][1]+pq.peek()[0];
                maxR = Math.max(r, maxR);
            }
            pq.add(new int[]{points[i][1]-points[i][0], points[i][0]});
        }
        return maxR;
    }
}

No comments:

Post a Comment