900. RLE Iterator
Medium
Write an iterator that iterates through a run-length encoded sequence.
The iterator is initialized by RLEIterator(int[] A)
, where A
is a run-length encoding of some sequence. More specifically, for all even i
, A[i]
tells us the number of times that the non-negative integer value A[i+1]
is repeated in the sequence.
The iterator supports one function: next(int n)
, which exhausts the next n
elements (n >= 1
) and returns the last element exhausted in this way. If there is no element left to exhaust, next
returns -1
instead.
For example, we start with A = [3,8,0,9,2,5]
, which is a run-length encoding of the sequence [8,8,8,5,5]
. This is because the sequence can be read as "three eights, zero nines, two fives".
Example 1:
Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]] Output: [null,8,8,5,-1] Explanation: RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]). This maps to the sequence [8,8,8,5,5]. RLEIterator.next is then called 4 times: .next(2) exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5]. .next(1) exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5]. .next(1) exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5]. .next(2) exhausts 2 terms, returning -1. This is because the first term exhausted was 5, but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Note:
0 <= A.length <= 1000
A.length
is an even integer.0 <= A[i] <= 10^9
- There are at most
1000
calls toRLEIterator.next(int n)
per test case. - Each call to
RLEIterator.next(int n)
will have1 <= n <= 10^9
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | class RLEIterator { int left = 0;//left numbers int index = -2;//even index on A int sz; int[] A; public RLEIterator(int[] A) { this.sz = A.length; this.A = A; } public int next(int n) { int v = 0; while(n>0){ if(left==0){ index += 2; if(index<sz) left = A[index]; else break; } v = A[index+1]; int d = Math.min(n, left); n -= d; left -= d; } if(n>0) return -1; else return v; } } /** * Your RLEIterator object will be instantiated and called as such: * RLEIterator obj = new RLEIterator(A); * int param_1 = obj.next(n); */ |
No comments:
Post a Comment