Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | class Solution { public: int minPathSum(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(); vector<vector<int>> dp(m+1, vector<int>(n+1, 0)); for(int i=0; i<=m; ++i) dp[i][0] = INT_MAX; for(int j=0; j<=n; ++j) dp[0][j] = INT_MAX; for(int i=1; i<=m; ++i) { for(int j=1; j<=n; ++j){ if(i==1 && j==1) dp[i][j] = grid[i-1][j-1]; else dp[i][j] = min(dp[i-1][j], dp[i][j-1])+grid[i-1][j-1]; } } return dp[m][n]; } }; |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | //Java class Solution { public int minPathSum(int[][] grid) { int m = grid.length; if(m==0) return 0; int n = grid[0].length; if(n==0) return 0; for(int i=0; i<m; ++i){ for(int j=0; j<n; ++j){ if(i>0 && j>0) grid[i][j] += Math.min(grid[i-1][j], grid[i][j-1]); else if(i>0) grid[i][j] += grid[i-1][j]; else if(j>0) grid[i][j] += grid[i][j-1]; } } return grid[m-1][n-1]; } } |
题目本身没啥好说的,就是dp解;面试官在我写的过程中问了很多细节,比如如果input不是一个二维矩阵[[1,2],[2,3,4]]这样,应该怎么办,开始没搞清他想考察什么,说那return -1?后来他解释说你这样最好用raise exception这个语句…有大神能解释下为啥这样更好嘛?
No comments:
Post a Comment