Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: "babad" Output: "bab" Note: "aba" is also a valid answer.
Example 2:
Input: "cbbd" Output: "bb"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | class Solution { public: string longestPalindrome(string s) { int n = s.size(); string ret; vector<vector<int>> dp(n, vector<int>(n, 0)); for(int i=n-1; i>=0; --i){ for(int j=i; j<n; ++j){ if(i!=j){ if(s[i]==s[j]){ if(i+1==j) dp[i][j] = 2; else if(dp[i+1][j-1]>0) dp[i][j]=dp[i+1][j-1]+2; } }else{ dp[i][j]=1; } if(ret.size()<dp[i][j]) ret = s.substr(i, dp[i][j]); } } return ret; } }; class Solution { public: string longestPalindrome(string s) { int start, len = 0, n = s.size(); bool dp[n][n]; memset(dp, false, n*n*sizeof(bool)); const char *d = s.data(); for(int i=0; i<n; ++i){ dp[i][i] = true; if(len<1){start = i; len = 1;} } for(int i=0; i<n-1; ++i){ if(d[i]==d[i+1]){ dp[i][i+1] = true; if(len<2){start = i; len = 2;} } } for(int i=n-3; i>=0; --i){ for(int j=i+2; j<n; ++j){ if(d[i]==d[j] && dp[i+1][j-1]){ dp[i][j] = true; if(len<j-i+1){len = j-i+1; start = i;} } } } return s.substr(start, len); } }; class Solution { public: string longestPalindrome(string s) { bool dp[1000][1000] = {false}; int n = s.size(); string ret; for(int i=n-1; i>=0; --i){ for(int j=i; j<n; ++j){ if(s[i]==s[j]){ if(i+1>j-1 || dp[i+1][j-1]){ dp[i][j] = true; if(j-i+1>(int)ret.size()){ ret = s.substr(i, j-i+1); } } } } } return ret; } }; class Solution { int expand(int &l, int &r, string s){ int len = -1; int n = s.size(); while(l>=0 && r<n && s[l]==s[r]){ len = r-l+1; l--; r++; } l++; r--; return len; } public: string longestPalindrome(string s) { int n = s.size(); if(n<=1) return s; int start = 0, len = 1; for(int i=0; i<n; ++i){ int l = i; int r = i; int len1 = expand(l, r, s); if(len1>len){ start = l; len = len1; } l = i; r = i+1; len1 = expand(l, r, s); if(len1>len){ start = l; len = len1; } } return s.substr(start, len); } }; class Solution { public: string expanding(string s){ string T; for(int i=0; i<s.size(); ++i){ T += '#'; T += s[i]; } T += "#"; return T; } string longestPalindrome(string s) { string T = expanding(s); int n = T.size(); int dp[n]; memset(dp, 0, n*sizeof(int)); int C = 0, R = 0, i = 1, maxLen = 0, start = 0; for(int i=1; i<n; ++i){ int i_mirror = C*2-i; dp[i] = (R>i)?min(R-i, dp[i_mirror]):0; while(i-dp[i]-1>=0 && i+dp[i]+1<n && T[i-dp[i]-1]==T[i+dp[i]+1]){ dp[i]++; } if(i+dp[i]>R){ C = i; R = i+dp[i]; } if(dp[i]>maxLen){ maxLen = dp[i]; start = (i-maxLen)/2; } } return s.substr(start, maxLen); } }; |
No comments:
Post a Comment