108. Convert Sorted Array to Binary Search Tree
Easy
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / \ -3 9 / / -10 5
//C++: 21ms /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* sortedArrayToBST(vector<int>& nums) { int n = nums.size(); return dfs(nums, 0, n-1); } TreeNode* dfs(vector<int>& nums, int start, int end){ if(start>end) return NULL; int mid = (start+end)/2; int root_v = nums[mid]; TreeNode* node = new TreeNode(root_v); node->left = dfs(nums, start, mid-1); node->right = dfs(nums, mid+1, end); return node; } }; //Java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public TreeNode sortedArrayToBST(int[] nums) { return helper(nums, 0, nums.length-1); } TreeNode helper(int[] nums, int l, int r){ if(l>r) return null; int m = (l+r)/2; TreeNode p = new TreeNode(nums[m]); p.left = helper(nums, l, m-1); p.right = helper(nums, m+1, r); return p; } }
No comments:
Post a Comment