886. Possible Bipartition
Medium
Given a set of N
people (numbered 1, 2, ..., N
), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b]
, it means it is not allowed to put the people numbered a
and b
into the same group.
Return true
if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]] Output: true Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]] Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]] Output: false
Constraints:
1 <= N <= 2000
0 <= dislikes.length <= 10000
dislikes[i].length == 2
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
- There does not exist
i != j
for whichdislikes[i] == dislikes[j]
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | class Solution { public boolean possibleBipartition(int N, int[][] dislikes) { List<Integer>[] graph = new ArrayList[N]; for (int i = 0; i < N; i++) graph[i] = new ArrayList<>(N); for (int i = 0; i < dislikes.length; i++) { int a = dislikes[i][0] - 1; int b = dislikes[i][1] - 1; graph[a].add(b); graph[b].add(a); } int[] color = new int[N]; color[0] = 1; for (int i = 0; i < N; i++) { if (!dfs(graph, i, color)) return false; } return true; } private boolean dfs(List<Integer>[] graph, int node, int[] color) { for (int i = 0; i < graph[node].size(); i++) { int op = graph[node].get(i); if (color[op] == 0) { color[op] = color[node] == 1 ? 2 : 1; if (!dfs(graph, op, color)) return false; } else { if (color[op] == color[node]) return false; } } return true; } } |
No comments:
Post a Comment