Thursday, March 18, 2021

LeetCode [714] Max Stack

 716. Max Stack

Easy

Design a max stack data structure that supports the stack operations and supports finding the stack's maximum element.

Implement the MaxStack class:

  • MaxStack() Initializes the stack object.
  • void push(int x) Pushes element x onto the stack.
  • int pop() Removes the element on top of the stack and returns it.
  • int top() Gets the element on the top of the stack without removing it.
  • int peekMax() Retrieves the maximum element in the stack without removing it.
  • int popMax() Retrieves the maximum element in the stack and removes it. If there is more than one maximum element, only remove the top-most one.

 

Example 1:

Input
["MaxStack", "push", "push", "push", "top", "popMax", "top", "peekMax", "pop", "top"]
[[], [5], [1], [5], [], [], [], [], [], []]
Output
[null, null, null, null, 5, 5, 1, 5, 1, 5]

Explanation
MaxStack stk = new MaxStack();
stk.push(5);   // [5] the top of the stack and the maximum number is 5.
stk.push(1);   // [5, 1] the top of the stack is 1, but the maximum is 5.
stk.push(5);   // [5, 1, 5] the top of the stack is 5, which is also the maximum, because it is the top most one.
stk.top();     // return 5, [5, 1, 5] the stack did not change.
stk.popMax();  // return 5, [5, 1] the stack is changed now, and the top is different from the max.
stk.top();     // return 1, [5, 1] the stack did not change.
stk.peekMax(); // return 5, [5, 1] the stack did not change.
stk.pop();     // return 1, [5] the top of the stack and the max element is now 5.
stk.top();     // return 5, [5] the stack did not change.

 

Constraints:

  • -107 <= x <= 107
  • At most 104 calls will be made to pushpoptoppeekMax, and popMax.
  • There will be at least one element in the stack when poptoppeekMax, or popMax is called.

 

Follow up: Could you come up with a solution that supports O(1) for each top call and O(logn) for each other call? 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class MaxStack {
    Stack<Integer> stk = new Stack<>();
    Stack<Integer> stkM = new Stack<>();

    /** initialize your data structure here. */
    public MaxStack() {
        
    }
    
    public void push(int x) {
        stk.add(x);
        if(stkM.isEmpty()) stkM.add(x);
        else{
            if(stkM.peek()<=x) stkM.add(x);
        }
    }
    
    public int pop() {
        int x = stk.pop();
        if(x==stkM.peek()) stkM.pop();
        return x;
    }
    
    public int top() {
        return stk.peek();
    }
    
    public int peekMax() {
        return stkM.peek();
    }
    
    public int popMax() {
        Stack<Integer> stkT = new Stack<>();
        int max = stkM.peek();
        while(stk.peek()!=max){
            stkT.add(stk.pop());
        }
        stk.pop();
        stkM.pop();
        while(!stkT.isEmpty()){
            int t = stkT.pop();
            stk.add(t);
            if(stkM.isEmpty() || t>=stkM.peek()) stkM.add(t);
        }
        return max;
    }
}


/**
 * Your MaxStack object will be instantiated and called as such:
 * MaxStack obj = new MaxStack();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.peekMax();
 * int param_5 = obj.popMax();
 */

No comments:

Post a Comment