1151. Minimum Swaps to Group All 1's Together
Medium
Given a binary array data
, return the minimum number of swaps required to group all 1
’s present in the array together in any place in the array.
Example 1:
Input: data = [1,0,1,0,1] Output: 1 Explanation: There are 3 ways to group all 1's together: [1,1,1,0,0] using 1 swap. [0,1,1,1,0] using 2 swaps. [0,0,1,1,1] using 1 swap. The minimum is 1.
Example 2:
Input: data = [0,0,0,1,0] Output: 0 Explanation: Since there is only one 1 in the array, no swaps needed.
Example 3:
Input: data = [1,0,1,0,1,0,0,1,1,0,1] Output: 3 Explanation: One possible solution that uses 3 swaps is [0,0,0,0,0,1,1,1,1,1,1].
Example 4:
Input: data = [1,0,1,0,1,0,1,1,1,0,1,0,0,1,1,1,0,0,1,1,1,0,1,0,1,1,0,0,0,1,1,1,1,0,0,1] Output: 8
Constraints:
1 <= data.length <= 105
data[i]
is0
or1
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | class Solution { public int minSwaps(int[] data) { int n = data.length; int[] dp = new int[n]; int cnt1 = 0;//number of ones int minSwaps = Integer.MAX_VALUE; for(int i=0; i<n; ++i){ if(data[i]==1){ cnt1++; dp[i] = cnt1; } } if(cnt1==0) return 0; int l = 0; int left1 = 0; while(l + cnt1 - 1 < n){ int swaps = left1 + cnt1 - dp[l+cnt1-1]; minSwaps = Math.min(minSwaps, swaps); left1 +=data[l++]; } return minSwaps; } } |
No comments:
Post a Comment