1373. Maximum Sum BST in Binary Tree
Hard
Given a binary tree root
, the task is to return the maximum sum of all keys of any sub-tree which is also a Binary Search Tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [1,4,3,2,4,2,5,null,null,null,null,null,null,4,6] Output: 20 Explanation: Maximum sum in a valid Binary search tree is obtained in root node with key equal to 3.
Example 2:
Input: root = [4,3,null,1,2] Output: 2 Explanation: Maximum sum in a valid Binary search tree is obtained in a single root node with key equal to 2.
Example 3:
Input: root = [-4,-2,-5] Output: 0 Explanation: All values are negatives. Return an empty BST.
Example 4:
Input: root = [2,1,3] Output: 6
Example 5:
Input: root = [5,4,8,3,null,6,3] Output: 7
Constraints:
- The given binary tree will have between
1
and40000
nodes. - Each node's value is between
[-4 * 10^4 , 4 * 10^4]
.
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { int ret = 0; public int maxSumBST(TreeNode root) { int[] v = valid(root); return ret; } //{isBST 0/1, small, largest, sum} int[] valid(TreeNode root){ if(root == null){ return new int[]{1, Integer.MAX_VALUE, Integer.MIN_VALUE, 0}; } int[] left = valid(root.left); int[] right = valid(root.right); boolean isBST = left[0]==1 && right[0]==1 && left[2] < root.val && root.val < right[1]; int sum = left[3]+right[3]+root.val; if(isBST){ ret = Math.max(ret, sum); } return new int[]{isBST?1:0, Math.min(root.val,left[1]), Math.max(root.val, right[2]), isBST?sum:0}; } }
No comments:
Post a Comment