1162. As Far from Land as Possible
Medium
Given an N x N grid
containing only values 0
and 1
, where 0
represents water and 1
represents land, find a water cell such that its distance to the nearest land cell is maximized and return the distance.
The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0)
and (x1, y1)
is |x0 - x1| + |y0 - y1|
.
If no land or water exists in the grid, return -1
.
Example 1:
Input: [[1,0,1],[0,0,0],[1,0,1]] Output: 2 Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.
Example 2:
Input: [[1,0,0],[0,0,0],[0,0,0]] Output: 4 Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.
Note:
1 <= grid.length == grid[0].length <= 100
grid[i][j]
is0
or1
class Solution { int[][] dir = new int[][]{{-1,0},{1,0},{0,-1},{0,1}}; public int maxDistance(int[][] grid) { int ret = 0; int m = grid.length, n = grid[0].length; Queue<int[]> que = new ArrayDeque<>(); for(int i=0; i<m; ++i){ for(int j=0; j<n; ++j){ if(grid[i][j]==1) que.add(new int[]{i, j}); } } int step = -1; while(!que.isEmpty()){ ret = Math.max(ret, (++step)); int sz = que.size(); for(int i=0; i<sz; ++i){ int[] p = que.poll(); for(int[] d : dir){ int x = p[0]+d[0], y = p[1]+d[1]; if(x>=0 && x<m && y>=0 && y<n && grid[x][y]==0){ grid[x][y] = -1;//visited 0 que.add(new int[]{x, y}); } } } } return ret==0?-1:ret; } }
No comments:
Post a Comment