209. Minimum Size Subarray Sum
Medium
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | //C++: method1 4ms class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int n = nums.size(), l = 0, r = 0, sum = 0, ret = INT_MAX; bool found = false; while(r<n){ sum += nums[r++]; while(sum-nums[l]>=s){ sum -= nums[l++]; } if(sum>=s){ ret = min(ret, r-l); found = true; } } return found?ret:0; } }; |
No comments:
Post a Comment