702. Search in a Sorted Array of Unknown Size
Given an integer array sorted in ascending order, write a function to search target
in nums
. If target
exists, then return its index, otherwise return -1
. However, the array size is unknown to you. You may only access the array using an ArrayReader
interface, where ArrayReader.get(k)
returns the element of the array at index k
(0-indexed).
You may assume all integers in the array are less than 10000
, and if you access the array out of bounds, ArrayReader.get
will return 2147483647
.
Example 1:
Input:array
= [-1,0,3,5,9,12],target
= 9 Output: 4 Explanation: 9 exists innums
and its index is 4
Example 2:
Input:array
= [-1,0,3,5,9,12],target
= 2 Output: -1 Explanation: 2 does not exist innums
so return -1
Constraints:
- You may assume that all elements in the array are unique.
- The value of each element in the array will be in the range
[-9999, 9999]
. - The length of the array will be in the range
[1, 10^4]
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | /** * // This is ArrayReader's API interface. * // You should not implement it, or speculate about its implementation * interface ArrayReader { * public int get(int index) {} * } */ class Solution { int N = 10000; int M = 2147483647; public int search(ArrayReader reader, int target) { int l = 0, r = N; while(l<=r){ int m = (l+r)/2; int res = reader.get(m); if(res==M){ r = m-1; }else{ if(res==target){ return m; } if(res<target){ l = m+1; }else{ r = m-1; } } } return -1; } } |
第四轮是面coding,有个indefinitely long list of words A,你不能直接access,只能call A.get(i)来得到第i个word,word是sorted,要查找一个word,返回在list里的index,followup是要你写一个A这样的object用来测试你的code,最后的followup是,我用了2^n的增速在寻找index的上边界,再binary search上下边界之间的word,小哥问有没有更快的算法,其实是问有没有比2^n增速更快的a^n的a能使整体time complexity更低
我的做法是写一个class,一个variable是list of word,一个function get,如果get输入大于等于list的长度,返回一个无穷大,跟任何str比都要大,如果输入在范围内,返回word
No comments:
Post a Comment