Friday, May 17, 2019

LeetCode [785] Is Graph Bipartite?

Given an undirected graph, return true if and only if it is bipartite.
Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.
The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists.  Each node is an integer between 0 and graph.length - 1.  There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.
Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation: 
The graph looks like this:
0----1
|    |
|    |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation: 
The graph looks like this:
0----1
| \  |
|  \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.

Note:
  • graph will have length in range [1, 100].
  • graph[i] will contain integers in range [0, graph.length - 1].
  • graph[i] will not contain i or duplicate values.
  • The graph is undirected: if any element j is in graph[i], then iwill be in graph[j].
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
//try color sets with two colors
//if nodes on the same edge end up with same color then the graph is not bipartite
class Solution {
public:
    bool isBipartite(vector<vector<int>>& graph) {
        int sz = graph.size();
        vector<int> colors(sz, 0);//0(uncolored) 1(blue) -1(red)

        for(int i=0; i<sz; ++i)
        {
            //node i is note colored yet, chose any color
            if(colors[i]==0 && !valid(i, 1, colors, graph)) return false;
        }
        return true;
    }
    
    bool valid(int i, int color, vector<int>& colors, vector<vector<int>>& graph)
    {
        colors[i] = color;
        for(auto n:graph[i])
        {
            if(colors[n]==color) return false;//nodes on the same edge have same color, conflict!
            if(colors[n]==0 && !valid(n, -color, colors, graph)) return false;
        }
        return true;
    }
};

No comments:

Post a Comment