1582. Special Positions in a Binary Matrix
Easy
Given a rows x cols matrix mat, where mat[i][j] is either 0 or 1, return the number of special positions in mat.
A position (i,j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).
Example 1:
Input: mat = [[1,0,0], [0,0,1], [1,0,0]] Output: 1 Explanation: (1,2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input: mat = [[1,0,0], [0,1,0], [0,0,1]] Output: 3 Explanation: (0,0), (1,1) and (2,2) are special positions.
Example 3:
Input: mat = [[0,0,0,1], [1,0,0,0], [0,1,1,0], [0,0,0,0]] Output: 2
Example 4:
Input: mat = [[0,0,0,0,0], [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,1]] Output: 3
Constraints:
rows == mat.lengthcols == mat[i].length1 <= rows, cols <= 100mat[i][j]is0or1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | class Solution { public int numSpecial(int[][] mat) { int m = mat.length, n = mat[0].length; int[] r = new int[m]; int[] c = new int[n]; int cnt = 0; for(int i=0; i<m; ++i){ for(int j=0; j<n; ++j){ if(mat[i][j]==1){ r[i]++; c[j]++; } } } for(int i=0; i<m; ++i){ for(int j=0; j<n; ++j){ if(mat[i][j]==1 && r[i]==1 && c[j]==1){ cnt++; } } } return cnt; } } |
No comments:
Post a Comment