Design a Tic-tac-toe game that is played between two players on a n x n grid.
You may assume the following rules:
- A move is guaranteed to be valid and is placed on an empty block.
- Once a winning condition is reached, no more moves is allowed.
- A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board. TicTacToe toe = new TicTacToe(3); toe.move(0, 0, 1); -> Returns 0 (no one wins) |X| | | | | | | // Player 1 makes a move at (0, 0). | | | | toe.move(0, 2, 2); -> Returns 0 (no one wins) |X| |O| | | | | // Player 2 makes a move at (0, 2). | | | | toe.move(2, 2, 1); -> Returns 0 (no one wins) |X| |O| | | | | // Player 1 makes a move at (2, 2). | | |X| toe.move(1, 1, 2); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 2 makes a move at (1, 1). | | |X| toe.move(2, 0, 1); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 1 makes a move at (2, 0). |X| |X| toe.move(1, 0, 2); -> Returns 0 (no one wins) |X| |O| |O|O| | // Player 2 makes a move at (1, 0). |X| |X| toe.move(2, 1, 1); -> Returns 1 (player 1 wins) |X| |O| |O|O| | // Player 1 makes a move at (2, 1). |X|X|X|
Follow up:
Could you do better than O(n2) per
Could you do better than O(n2) per
move()
operation?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | class TicTacToe { public: vector<int> cols, rows; int diagonal, antiDiagonal; /** Initialize your data structure here. */ TicTacToe(int n) : diagonal(0), antiDiagonal(0) { cols = vector<int>(n); rows = vector<int>(n); } /** Player {player} makes a move at ({row}, {col}). @param row The row of the board. @param col The column of the board. @param player The player, can be either 1 or 2. @return The current winning condition, can be either: 0: No one wins. 1: Player 1 wins. 2: Player 2 wins. */ int move(int row, int col, int player) { int toAdd = player == 1 ? 1 : -1; rows[row] += toAdd; cols[col] += toAdd; if (row == col) { diagonal += toAdd; } int len = rows.size(); if (row == len-col-1) { antiDiagonal += toAdd; } if (abs(rows[row]) == len || abs(cols[col]) == len || abs(diagonal) == len || abs(antiDiagonal) == len) { return player; } return 0; } }; |
No comments:
Post a Comment