Wednesday, February 17, 2016

LeetCode [334] Increasing Triplet Subsequence

 334. Increasing Triplet Subsequence

Medium

Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.

Formally the function should:

Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.

Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.

Example 1:

Input: [1,2,3,4,5]
Output: true

Example 2:

Input: [5,4,3,2,1]
Output: false
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
    bool increasingTriplet(vector<int>& nums) {
        int n = nums.size();
        vector<int> dp(n, 1);
        for(int i=1; i<n; ++i){
            for(int j=0; j<i; ++j){
                if(nums[i]>nums[j]){
                    dp[i] = max(dp[i], dp[j]+1);
                    if(dp[i]>=3) return true;
                }
            }
        }
        return false;
    }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
bool increasingTriplet1(vector<int>& nums) {
        vector<int> dp;
        for(auto n:nums){
            if(dp.empty()||n>dp.back()){
                dp.push_back(n);
                if(dp.size()>=3) return true;
            }else{
                int l = 0, r = dp.size()-1;
                while(l<=r){
                    int m = (l+r)/2;
                    if((m==0||n>dp[m-1])&&n<=dp[m]){
                        dp[m]=n;
                        break;
                    }else if(n>dp[m]){
                        l = m+1;
                    }else{
                        r = m-1;
                    }
                }
            }
        }
        return false;
    }

1
2
3
4
5
6
7
8
9
    bool increasingTriplet2(vector<int>& nums) {
        int c1 = INT_MAX, c2 = INT_MAX;
        for(auto n:nums){
            if(n<=c1) c1 = n;
            else if(n<=c2) c2 = n;
            else return true;
        }
        return false;
    }

No comments:

Post a Comment