Given an array of integers
A
, find the sum of min(B)
, where B
ranges over every (contiguous) subarray of A
.
Since the answer may be large, return the answer modulo
10^9 + 7
.
Example 1:
Input: [3,1,2,4] Output: 17 Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4]. Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
Note:
1 <= A.length <= 30000
1 <= A[i] <= 30000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | class Solution { const int mod = 1e9+7; public: int sumSubarrayMins(vector<int> &A) { stack<pair<int, int>> stk; //val, count(#subset(ending at val) with min(subset)==val) int sum = 0; int partialSum = 0;//sum of min(B) ending at a for (auto a : A)//consider all subsets ending at 'a' { int count = 1;//min({a})==a, so count = 1 while (!stk.empty() && a < stk.top().first) { pair<int, int> vc = stk.top(); stk.pop(); partialSum -= vc.first * vc.second; count += vc.second; } stk.push(pair<int, int>(a, count)); partialSum += a * count; sum += partialSum; sum %= mod; } return sum; } }; |
No comments:
Post a Comment